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Abstract Rényi entropies and variances are determined in the vibron model. They
provide a sharp detector for the quantum (shape) phase transition (from linear to bent)
at the critical value ξc of a control parameter ξ . Numerical results are complemented
and compared with a variational approximation in terms of parity-symmetry-adapted
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delocalization properties of the ground state of vibron models across the critical point
for N -size molecules.
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1 Introduction

Recently, quantum phase transitions (QPT) [1] have received increasing attention.
While in classical phase transitions it is a change in the temperature that induces an
abrupt change in the physical properties of a system, QPT take place at absolute zero
of temperature. In these models, one finds different quantum phases connected to
specific geometric configurations of the ground state and related to distinct dynamic
symmetries of the Hamiltonian. The QPT occurs as a function of a control parameter
ξ that appears in the Hamiltonian H , for us in the form of a convex combination
H(ξ) = (1 − ξ)H1 + ξH2. At ξ = 0 the system is in phase I, characterized by the
dynamical symmetry G1 of H1, and at ξ = 1 the system is in phase II, characterized
by the dynamical symmetry G2 of H2. At some critical point ξc there is an abrupt
change in the symmetry and structure of the ground state wavefunction.

On the other hand, large correlations and delocalization are fundamental properties
at the transition point and some information theoretical measures of delocalization has
been recently studied to characterize QPT showing that they change significantly at
the transition point [2–6]. In particular it has been seen that the Rényi entropy, relative
complexity and Fisher–Rényi information product detect the quantum phase transition
in the Dicke model [7–9].

Rényi entropy [6] of order α for a density function � normalized to one is defined
by

Rα ≡ 1

1 − α
ln

∫
�α(q)dq, for 0 < α < ∞, α �= 1. (1)

This quantity is a one-parameter extension of Shannon entropy [10] as the Rényi
entropy tends to the Shannon entropy

S = −
∫
�(q) ln �(q)dq (2)

when α → 1. Rényi entropy has been applied in several fields of quantum physics,
such as quantum entanglement [11], quantum communication protocols [12], quantum
correlations [13], localization properties [14], quantum revivals [15] or atomic phys-
ics [16–19]. These information measures sometimes give a description of the QPT of
better quality than standard variance

(�q)2 = 〈q2〉 − 〈q〉2 =
∫

q2�(q)dq −
(∫

q�(q)dq

)2

, (3)

which scales with the number of ‘particles’ and therefore proves to be divergent in the
thermodynamic limit (see e.g. [4,20] for the case of the Dicke model).

In this paper we will study Rényi entropy as a measure of delocalization in the con-
text of the “vibron models” [21–23], interacting boson models which exhibit a second
order shape phase transition from linear to bent. These models have been used to study
the rovibrational properties in diatomic and polyatomic molecules and have turned to
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be very useful to study symmetry properties of quantum systems. They are suitable
to investigate QPT, too. Here, two dimensional (2D) vibron models are selected to
demonstrate how the Rényi entropy reflects QPT. In Sect. 2 the algebraic approach
to 2D-vibron models has been briefly reviewed. We shall present ground state Rényi
entropies as a measure of delocalization across the QPT point. Then we shall consider
the variational description of the ground state with coherent states (CS) adapted to
the parity symmetry of the system (introduced in [24]) showing that Rényi entropy
of this variational approximation detects a sudden delocalization of the ground state
wave packet across the critical point. Finally we shall present some analytical results
related with the Rényi entropy of the parity-symmetry adapted coherent states.

2 Vibron model

2D-vibron models describe a system containing a dipole degree of freedom constrained
to planar motion. Elementary excitations are (creation and annihilation) 2D vector
τ -bosons {τ †

x , τ
†
y , τx , τy} and a scalar σ -boson {σ †, σ }. It is convenient to introduce

circular bosons: τ± = ∓(τx ∓ iτy)/
√

2. The nine generators of the U (3) algebra are
bilinear products of creation and annihilation operators, in particular:

n̂ = τ
†
+τ+ + τ

†
−τ−, n̂s = σ †σ,

l̂ = τ
†
+τ+ − τ

†
−τ−, (4)

D̂+ = √
2(τ †

+σ − σ †τ−), D̂− = √
2(−τ †

−σ + σ †τ+),

denote the number operator of vector n̂ and scalar n̂s bosons, 2D angular momen-
tum l̂ and dipole D̂± operators, respectively (see [25] for the reminder four opera-
tors Q̂±, R̂±, which will not be used here). Assuming the total number of bosons
N̂ = n̂ + n̂σ and the 2D angular momentum l̂ to be conserved, there are only two
dynamical symmetry limits, G1 = U (2) and G2 = SO(3), associated with two alge-
braic chains starting from U (3) and ending in SO(2): the so-called ‘cylindrical’ and
‘displaced’ oscillator chains. A general Hamiltonian of the U (3) vibron model with
only one- and two-body interactions can be expressed in terms of linear and quadratic
Casimir operators of all the subalgebras contained in the dynamical symmetry algebra
chains. To capture the essentials of the phase transition from the G1-phase (linear)
to the G2-phase (bent) it is enough to consider a convex combination of the linear
C1(U (2)) = n̂ and quadratic C2(SO(3)) = Ŵ 2 = (D̂+ D̂− + D̂− D̂+)/2+ l̂2 Casimir
operators of the corresponding dynamical symmetries. In particular, we shall consider
the essential Hamiltonian [25]

Ĥ = (1 − ξ)n̂ + ξ
N (N + 1)− Ŵ 2

N − 1
, (5)

where the (constant) quantum number N is the total number of bound states that labels
the totally symmetric (N + 1)(N + 2)/2 dimensional representation [N ] of U (3). It
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is known (see [25] and later on Sec. 3.2) that this model exhibits a (shape) QPT at
ξc = 0.2 and we shall see that Rényi entropies provide sharp indicators of this QPT.

The Hilbert space is spanned by the orthonormal basis vectors

|N ; n, l〉 = (σ †)N−n(τ
†
+)

n+l
2 (τ

†
−)

n−l
2√

(N − n)! ( n+l
2

)! ( n−l
2

)!
|0〉, (6)

where the bending quantum number n = N , N − 1, N − 2, . . . , 0 and the angular
momentum l = ±n,±(n − 2), . . . ,±1 or 0 (n =odd or even) are the eigenvalues of
n̂ and l̂, respectively. The matrix elements of Ŵ 2 can be easily derived (see e.g. [25]):

〈N ; n′, l|Ŵ 2|N ; n, l〉 = ((N − n)(n + 2)+ (N − n + 1)n + l2)δn′,n

−((N − n + 2)(N − n + 1)(n + l)(n − l))
1
2 δn′,n−2

−((N − n)(N − n − 1)(n + l + 2)(n − l + 2))
1
2 δn′,n+2.

From these matrix elements, it is easy to see that time evolution preserves the parity
eiπn of a given state |N , n, l〉. That is, the parity operator 
̂ = eiπ n̂ commutes with
Ĥ and both operators can then be jointly diagonalized. We shall take this fact into
account when proposing parity-symmetry-adapted ansäte in Sect. 3.2.

In order to compute information measures, it will be useful to write the basis wave
functions (6) in ‘position’ qi = 1√

2
(a†

i + ai ) representation, with (a0, a1, a2) ≡
(σ, τ+, τ−) our three oscillator operators, which can be written in terms of Hermite
polynomials Hk(x) as:

〈q |N ; n, l〉 = 2−N/2π−3/4e−(q2
0 +q2

1 +q2
2 )/2√

(N − n)! ( n+l
2

)! ( n−l
2

)!
×HN−n(q0)Hn+l

2
(q1)Hn−l

2
(q2). (7)

3 Rényi entropy and variances

3.1 Numerical study

Let us denote by

|ψ(N )ξ 〉 =
N∑

n=0

n∑
m=0

c(N )n,m(ξ)|N ; n, l = n − 2m〉 (8)

the exact ground state of our system obtained by diagonalization of the Hamiltonian
(5) in terms of the basis vectors (6) with coefficients c(N )n,m(ξ) (which have to be cal-
culated numerically). Let us denote by ψ(N )ξ (q) = 〈q |ψ(N )ξ 〉 the corresponding wave
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function in position representation q = (q0, q1, q2) and by ρ(N )ξ (q) = |ψ(N )ξ (q)|2 the
ground state density distribution, for which the Rényi entropy

RαN (ξ) = 1

1 − α
ln

∫

R3

(
ρ
(N )
ξ (q)

)α
d3q, (9)

with α > 0, is a function of the control parameter ξ for each N .
In Fig. 1 we represent Rényi (and Shannon) entropies of the ground state of the

vibron model in position representation for a few selected values of α = 1, 2, 3/4
and N = 8, 16, 20, as a function of ξ . We can see that Rényi entropies undergo a
sudden growth across the phase transition critical point ξc � 0.2, thus indicating a
delocalization of the ground state wave packet in the second (bent) phase, ξ > 0.2.
Moreover, it can be seen in Fig. 1 that RαN (ξ) is an increasing function of N and ξ and
a decreasing function of α.

One can verify that, for this model, the ground state wave function in momentum
space ψ̃(N )ξ (p) = 〈p |ψ(N )ξ 〉 (i.e., the Fourier transform ofψ(N )ξ (q)) has the same func-

tional form as ψ(N )ξ (q). Thus, we shall restrict ourselves to position space. Moreover,
the mean values

〈qi 〉 =
∫

R3

qi ρ
(N )
ξ (q)d3q = 0, i = 0, 1, 2, (10)

are zero, so that standard uncertainty variance products will be given by the mean
squares

(�qi )
2 = 〈q2

i 〉 =
∫

R3

q2
i ρ

(N )
ξ (q)d3q, i = 0, 1, 2. (11)

Rotational symmetry implies 〈q2
1 〉 = 〈q2

2 〉. In Fig. 2 we see that uncertainty in q0
decreases, whereas uncertainty in q1,2 increases, across the phase transition, and both
quantities scale with N (the size of the system). Moreover, the total variance:

〈
q2

0 + q2
1 + q2

2

〉
= 3

2
+ N (12)

is constant (independent of ξ ). This fact is related to the conservation of the total
number of bosons N̂ = a†

0a0 + a†
1a1 + a†

2a2.

3.2 Variational study

The classical, thermodynamic or mean-field N → ∞ limit of these models is studied
by using an algorithm introduced by Gilmore [26] which makes use of semi-classical
(boson-condensate) coherent states (CSs) (see e.g. [27–29] for standard references
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Fig. 1 (Color online) Rényi
entropies RαN (ξ) for the exact
(numerical) ground state of the
vibron model as a function of ξ
for α = 3/4 (top panel), α = 1
(middle panel) and α = 2
(bottom panel) for N = 8, 16
and 20

on CSs), as variational states to approximate the ground state energy, in particular
‘projective’ [25] CSs

|N ; r〉 ≡ 1√
N ! (b

†
c )

N |0〉, b†
c = 1√

1 + r2
(σ † + rτ †

x ), (13)

with r ≥ 0 a free variational parameter and b†
c the boson condensate. Other rotation-

ally equivalent possibilities can be also considered [30]; moreover, intrinsic excitations
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Fig. 2 (Color online) Rescaled
variances (2〈q2

1,2〉 − 1)/N (top

panel) and (〈q2
0 〉 − 1/2)/N

(bottom panel) for the exact
(numerical) ground state of the
vibron model as a function of ξ
for N = 8, 16 and 20

can also be constructed by replacing the intrinsic boson bc with orthogonal excitation
bosons, thus defining multi-species CSs (see e.g [31,32]). In this article we shall
restrict ourselves to ground state ansäte. In position representation, this trial state can
be written as:

ψ(N )r (q) = 〈q |N ; r〉 (14)

=
e− 1

2 (q
2
0 +q2

1 +q2
2 )HN

(
q0− r√

2
(q1−q2)√

1+r2

)

2N/2π3/4
√

N ! ,

where we have used (7) at some stage.
The variational parameter r is fixed by minimizing the ground state energy func-

tional ‘per particle’ [25]:

Eξ (r) = 〈Ĥ〉
N

= (1 − ξ)
〈n̂〉
N

+ ξ
N (N + 1)− 〈Ŵ 2〉

N (N − 1)

= (1 − ξ)
r2

1 + r2 + ξ

(
1 − r2

1 + r2

)2

(15)
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where we have used 〈·〉 as a shorthand for expectation values in |N ; r〉. From ∂Eξ (r)/
∂r = 0 one gets the ‘equilibrium radius’ re and the ground state energy Eξ as a function
of the control parameter ξ :

re(ξ) =
{

0, ξ ≤ ξc = 1/5√
5ξ−1
3ξ+1 , ξ > ξc = 1/5

Eξ (re(ξ)) =
{
ξ, ξ ≤ ξc = 1/5
−9ξ2+10ξ−1

16ξ , ξ > ξc = 1/5.

(16)

Then one finds that d2Eξ (re(ξ))/dξ2 is discontinuous at ξc = 1/5 and the phase
transition is said to be of second order.

Although |N ; re(ξ)〉 properly describes some mean-field quantities (namely, the
mean energy) and ground-state behavior in the thermodynamic limit N → ∞, it has
been recently noticed in [24] that it does not capture the correct behavior for other
ground state properties sensitive to the parity symmetry 
̂ of the Hamiltonian like, for
instance, vibration-rotation entanglement. Indeed, a far better variational description
of the ground state is given in terms of the even-parity projected ‘projective’ CSs [24]:

ψ
(N )
r,+ (q) ≡ ψ

(N )
r (q)+ ψ

(N )
−r (q)√

2

(
1 +

(
1−r2

1+r2

)N
) . (17)

In [24] we proved that (17) is a superposition of two non-overlapping (distinguishable)
quasi-classical (coherent) wave packets, which justifies the term ‘Schrödinger catlike’
for these states. Symmetry adapted CSs have also been proposed in [33,34] to study
the Dicke model QPT.

The variational parameter r in (17) is again computed by minimizing the ground
state energy functional ‘per particle’ E (N )ξ,+ (r) = 〈Ĥ〉+/N as in (15), but now for the
symmetric configuration (17), given in terms of the new mean values:

〈n̂〉+
N

= r2((1 + r2)N−1 − (1 − r2)N−1)

(1 + r2)N + (1 − r2)N
(18)

〈Ŵ 2〉+
N

= 2
(1 + r2)N + (1 − r2)N−2(1 + 2Nr2 + r4)

(1 + r2)N + (1 − r2)N
.

Unlike Eξ (r), the new energy functional E (N )ξ,+ (r) depends on N . From ∂E (N )ξ,+ (r)/∂r =
0 we can obtain the new equilibrium radius r (N )e (ξ). Figure 3 compares re(ξ) in
(16) with r (N )e (ξ) for N = 8, 16, 60. We observe that, in the thermodynamic limit,
r (∞)

e (ξ) = re(ξ). Figure 4 also compares the exact ground state energy density (as a
function of ξ ) with the ‘cat’ (17) E (N )ξ,+ (r

(N )
e (ξ)) and ‘mean-field’ (14) Eξ (re(ξ))mean

energy per particle. We see that the cat state (17) provides a lower energy value than
the mean-field state (14) and tends to it in the thermodynamic limit N → ∞, just as
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Fig. 3 (Color online)

Equilibrium radius r (N )e (ξ) of
the cat approximation for
N = 8, 16 and 60. We are
identifying r (∞)

e (ξ) = re(ξ)

(dashed), the equilibrium radius
for the mean-field approximation

Fig. 4 (Color online) Exact
ground state energy density
(solid) against the ‘cat mean
energy per particle’

E+
N (ξ) ≡ E(N )ξ,+ (r

(N )
e (ξ))

(dashed) for N = 2, N = 3 and
N = 60. We are identifying

E(∞)
ξ,+ (r

(∞)
e (ξ)) = Eξ (re(ξ))

(dotted), the mean energy per
particle of the mean-field
approximation. EN grows
with N

the exact ground energy density does. We have represented the two more unfavorable
cases N = 2 and 3. For N > 60, the energy density values provided by exact, cat and
mean-field configurations are already quite similar.

Let us denote by

ρ
(N )
ξ (q)m.f. =

∣∣∣ψ(N )re(ξ)
(q)

∣∣∣2
, (19)

ρ
(N )
ξ (q)cat =

∣∣∣∣ψ(N )r (N )e (ξ),+(q)
∣∣∣∣
2

, (20)

the variational ground state probability densities for the mean field (14) and cat (17)
configurations. Figure 5 represents Rényi entropies RαN (ξ) for the variational ground
state, ‘mean-field’ and ‘cat’ configurations as a function of ξ for different values of α
and N . We see that, whereas the Rényi entropy of the mean field configuration remains
constant with the control parameter ξ , the cat configuration captures the QPT at the
critical point ξc = 0.2, showing an entropy excess of �RαN (ξ) � 0.5 between the
both phases, thus accounting for the sudden delocalization of the ground state across
the phase transition.

The values of RαN (ξ) for the variational cat state exactly coincide with the exact
(numerical) values in the rigidly linear phase ξ � 0, although they differ in the rigidly
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Fig. 5 (Color online) Rényi
entropies RαN (ξ) for the
variational ground state,
‘mean-field’ (constant dashed)
and ‘cat’, configurations as a
function of ξ for α = 3/4 (top
panel), α = 1 (middle panel)
and α = 2 (bottom panel) for
N = 8, 16 and 20

bent phase ξ � 1. We can see in Fig. 6 together the exact (solid line), cat (dashed
line) and mean-field (constant line) entropies, for Rα20(ξ) with α = 3/4, 1 and 2
(from top to bottom). Figure 6 shows that the numerical and cat entropies capture the
delocalization while the mean-field entropies remain constant. One can easily realize
why the Rényi entropies (9) are constant for the mean field probability density (19).
Actually, the change of variables q ′ = qR(r), with q = (q0, q1, q2) and

R(r) = 1√
1 + r2

⎛
⎜⎜⎜⎝

1 0 r

− r√
2

√
1+r2√

2
1√
2

r√
2

√
1+r2√

2
− 1√

2

⎞
⎟⎟⎟⎠
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Fig. 6 (Color online) Rényi
entropies RαN (ξ) for (from top to
bottom) α = 3/4, 1 and 2, for
the numerical (solid line), ‘cat’
(dots) and ‘mean-field’ (constant
line) variational approximations
as a function of ξ for N = 20

a (not unique) orthogonal matrix (RRT = 1), allows us to write the mean field wave
function (14) simply as

ψ(N )r (q) = e− 1
2 q ′2

HN (q ′
0)

2N/2π3/4
√

N ! ,

where we have used that q2 = q ′2 (orthogonal transformation). Taking into account
that the Lebesgue measure d3q in (9) is invariant under rotations (d3q = d3q ′), and
that the explicit dependence of ψ(N )r (q) on r disappears when written in terms of q ′,
we finally get the independence of RαN on ξ for the mean field probability density (19)
(though the dependence of r = re(ξ) on ξ ).

At this point we have to underline that the cat approximation gives a good quanti-
tative description in the rigidly linear phase, but it has a different value in the rigidly
bent phase, although it qualitatively captures the exact behavior. We want to stress
that one should expect some differences because the minimization of the Hamiltonian
with these type of variational wave functions are known to provide an approximation
to the exact ground state energy in order 1/N (see e.g. Fig. 4 and [35,36] for a deep
study of this aspect of the problem. Integrals are numerically calculated for specific
values of α, N and ξ . However, we can still provide an asymptotic N � 1 value of
RαN (0) for some values of α. In fact, taking into account that r (N )e (0) = 0, ∀N , the
cat state (17) at ξ = 0 factorizes as:

ψ
(N )
0,+ (q) = e− 1

2 (q
2
0 +q2

1 +q2
2 )HN (q0)

2N/2π3/4
√

N ! . (21)

Thus we can define the density at ξ = 0 as the product of “rotational” times “vibra-
tional” contributions

ρ(N )(q) = |ψ(N )0,+ (q)|2 = ρ
(N )
R (q0)ρ

(N )
V (q1, q2) (22)
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with

ρ
(N )
R (q1, q2) = e−(q2

0 +q2
1 )

π
, (23)

ρ
(N )
V (q0) = e−q2

0 H2
N (q0)

2N
√
πN ! . (24)

Rényi entropy at ξ = 0 can be then written as the sum of two (rotational plus vibra-
tional) contributions

RαN (0) = R̃αN + V α
N (25)

with

R̃αN = ln π − ln α

1 − α
(26)

V α
N = 1

1 − α
ln

(∫
ρ
(N )
V (q0)dq0

)
. (27)

The vibrational Rényi entropy takes the form

V α = 1

1 − α
(28)

⎡
⎣ln

⎛
⎝

∞∫

−∞
e−αq2

0 H2α
N (q0)dq0

⎞
⎠ − α ln

(
2N √

πN !
)⎤
⎦ .

In the limit α → 1, the vibrational Shannon entropy is obtained (it has already been
determined by Assche et al. [37]):

V 1
N = ln (

√
π2N N !)+ N + 1

2
+ 1

2N
√
πN ! S(HN ), (29)

where

S(HN ) = −
∫

e−q2
0 H2

N (q0) ln (HN (q0))
2dq0 (30)

is the vibrational Shannon entropy of the Hermite polynomials HN . The latter has
not been determined yet. For large N , however, the integral in Eq. (30) can be found
[38–42]

S(HN ) ≈ N + 3

2
− ln π − ln

√
2N , N � 1, (31)

and the Shannon entropy has the asymptotic value
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V 1
N ≈ ln

π
√

2N

e
, N � 1. (32)

No analytical expression of V α
N has been found for general α. However, we must

mention that there also exist analytical results for the asymptotic case N � 1 for
α ∈ (0, 4/3] [38,43]:

V α
N � 1

2
ln (2N + 1)+ 1

1 − α
(33)

[
α ln

(
2

π

)
+ ln

(
�(α + 1/2)�(1 − α/2)

�(α + 1)�((3 − α)/2)

)]
.

The Shannon entropy calculated with this asymptotic expression is S = R1 = 4.13
for N = 20, while the numerical and variational results give 4.42 (see Fig. 5). The
asymptotic expression for R3/4

20 (0) gives 4.42 whereas the numerical and variational
values are 4.37. To gain an insight into the α-dependence of the Rényi entropy first
note that in this case (ξ = 0) the N and α dependence can be separated in the total
Rényi entropy as

RαN (0) = V 1
N + R∗

α. (34)

V 1
N is the asymptotic value for the Shannon vibrational entropy given by Eq. (32) and

R∗
α � 1

1 − α
ln

[
1

α

(
2

π

)α
�(α + 1/2)�(1 − α/2)

�(α + 1)�((3 − α)/2)

]
+ 1 (35)

includes the α-dependence. Figure 7. presents R∗
α for (0, 4/3]. We can see that V 1

N and
R∗
α are about the same order in magnitude for N = 20. As V 1

N contains the logarithm
of N , it increases with N rather slowly and R∗

α can be neglected only for very large
N (for instance, for N = 1023 we obtain V 1

N = 26.97). The Rényi entropy behaves
as 1

2 ln N for large N in the interval α ∈ (0, 4/3]. We are tempted to conjecture the
same behavior for other values of α and a similar behavior for other values of ξ .

Finally we compare variances for symmetric (cat) and non-symmetric (mean field)
configurations. Let us simply denote by:

〈q2
i 〉+(ξ) =

∫

R3

q2
i ρ

(N )
ξ (q)catd

3q, i = 0, 1, 2, (36)

the expectation values of squared position for symmetric (and 〈q2
i 〉 for non-symmetric)

configurations. It is easy to realize that 〈qi 〉+ = 0 = 〈qi 〉,∀i . Thus, fluctuations are
given in terms of the mean squares:
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Fig. 7 The α-dependent part R∗
α

of the Rényi entropy for ξ = 0

Fig. 8 (Color online)
Normalized variance for the
‘scalar’ component q0 in the cat
(N = 2 and 8) and mean-filed
(N = ∞) approximations

〈q2
0 〉(r2) = 1

2
+ N

1

1 + r2 ,

〈q2
1,2〉(r2) = 1

2
+ N

2

r2

1 + r2 , (37)

for the non-symmetric configuration and

〈q2
0 〉+(r2) = (1 + r2)N 〈q2

0 〉(r2)+ (1 − r2)N 〈q2
0 〉(−r2)

(1 + r2)N + (1 − r2)N
,

〈q2
1,2〉+(r2) = (1 + r2)N 〈q2

1,2〉(r2)+ (1 − r2)N 〈q2
1,2〉(−r2)

(1 + r2)N + (1 − r2)N
, (38)

for the symmetric one. Here r is a shorthand for the equilibrium radius re(ξ) and
r (N )e (ξ) in Eqs. (37) and (38), respectively, so that fluctuations depend on N and the
control parameter ξ . Rotational symmetry implies 〈q2

1 〉 = 〈q2
2 〉 in both cases. Note

also that again, in both cases, the total variance:

〈q2
0 + q2

1 + q2
2 〉 = 3

2
+ N = 〈q2

0 + q2
1 + q2

2 〉+ (39)
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Fig. 9 (Color online)
Normalized variance for the
‘vector’ components
�q = (q1, q2) in the cat (N = 2
and 8) and mean-filed (N = ∞)
approximations

Fig. 10 (Color online)
Numerical, cat and mean field
normalized variances for the
‘scalar’ component q0 and the
‘vector’ components
�q = (q1, q2) for N = 20

is independent of ξ . Figures 8 and 9 compare fluctuations for variational symmetric
(N = 2 and N = 8) and non-symmetric (N = ∞) ground state approximations
(compare with the exact numerical values in Fig 2).

These pictures show that rescaled variances for the symmetric configuration are
finite-size (N < ∞) approximations of the variance for the non-symmetric con-
figuration (N = ∞) and tend to it in the thermodynamic limit. Therefore, whereas
Rényi uncertainty is strongly sensitive to parity symmetry, variances are not.
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Finally, in Fig. 10 we have included a comparison between numerical, cat and mean-
field variances for the case N = 20 to appreciate the differences between them.

4 Summary

We have studied Rényi entropies as a detector of the quantum phase transition in the
vibron model. An exact diagonalization of the Hamiltonian shows that Rényi entropies
have a sudden growth across the critical point. We also present a variational analysis
in terms of CSs (mean-field configuration) and even-parity CSs (cat configuration)
which enriches the analysis. Whereas Rényi entropies remain constant with the con-
trol parameter ξ in the mean-field configuration, the cat configuration accounts for
the QPT at the critical point ξc. We also compute variances for symmetric (cat) and
nonsymmetric (mean-field) variational approximations. Variances for cat states match
the exact results and both tend to variances of the mean-field in the limit N → ∞.
Variances are less sensitive to parity than Rényi entropies and scale with N (they
diverge in the thermodynamic limit), although they also provide a good description
of the QPT. black Rényi entropies are more sensitive in this particular model and it
doesn’t imply that it can be extrapolated to other physical systems, so we have to stress
that, of course, variances continue being a good detector of the presence of a quantum
phase transition. Finally, we have obtained some approximated analytical expressions
for Rényi entropies in this model.
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